Electron mobility and spin lifetime enhancement in strained ultra-thin silicon films
نویسندگان
چکیده
Spintronics attracts much attention because of the potential to build novel spin-based devices which are superior to nowadays charge-based microelectronic devices. Silicon, the main element of microelectronics, is promising for spin-driven applications. Understanding the details of the spin propagation in silicon structures is a key for building novel spin-based nanoelectronic devices. We investigate the surface roughnessand phonon-limited electron mobility and spin relaxation in ultra-thin silicon films. We show that the spin relaxation rate due to surface roughness and phonon scattering is efficiently suppressed by an order of magnitude by applying tensile stress. We also demonstrate an almost twofold mobility increase in ultra-thin (001) SOI films under tensile [110] stress, which is due to the usually neglected strain dependence of the scattering matrix elements. 2015 Elsevier Ltd. All rights reserved.
منابع مشابه
Acoustic phonon and surface roughness spin relaxation mechanisms in strained ultra-scaled silicon films
We consider the impact of the surface roughness and phonon induced relaxation on transport and spin characteristics in ultra-thin SOI MOSFET devices. We show that the regions in the momentum space, which are responsible for strong spin relaxation, can be efficiently removed by applying uniaxial strain. The spin lifetime in strained films can be improved by orders of magnitude, while the momentu...
متن کاملMobility Modeling in Advanced MOSFETs with Ultra-Thin Silicon Body under Stress
Mobility in advanced MOSFETs with strained ultra-thin silicon body is investigated. We use a two-band k·p model to describe the subband structure in strained silicon thin films. The model provides the dependence of the conductivity effective mass on strain and film thickness. The conductivity mass decreases along tensile stess in [110] direction applied to a (001) silicon film. This conductivit...
متن کاملValley degeneracy and spin lifetime enhancement in stressed silicon films
Recent advances in development of multi-core processor architectures and three-dimensional (3D) integration supported by continuous semiconductor device scaling continued to boost the performance of modern computers. However, in order to proceed with the performance enhancement beyond 3D integration completely new innovative approaches are mandatory. The electron spin attracts a significant att...
متن کاملStrained silicon-on-insulator for spintronic applications: Giant spin lifetime enhancement
With CMOS feature size rapidly approaching ultimate limits, electron spin is attracting attention as an alternative to the electron charge. Silicon appears to be the perfect material for spin-driven applications. Room-temperature electrical spin injection into Si from a ferromagnetic contact has been successfully demonstrated [1]. Silicon is mostly composed of nuclei with zero spin and characte...
متن کاملThe effects of strain on carrier transport in thin and ultra-thin SOI MOSFETs
Thin-body MOSFET geometries such as fully-depleted SO1 and double-gate devices are attractive because they can offer superior scaling properties compared to bulk and thick-body SO1 devices. The electrostatics of a MOSFET limit how short of a gate length can be achieved before the gate loses control over the channel. In bulk-like devices, the device designer keeps the gate in control with gate o...
متن کامل